Turing Machines (TM)

MODEL OF COMPUTATION

Outlines

- Structure of Turing machines
- Deterministic Turing machines (DTM)
- Accepting a language
- Computing a function
- Composite Turing machines
- Multitape Turing machines
- Nondeterministic Turing machines (NTM)
- Universal Turing machines (UTM)

Structure of TM

Store input for the TM
Can be of any length
Can read from and write on tape

What does a TM do?

- Determine if an input x is in a language.
- That is, answer if the answer of a problem P for the instance x is "yes".
- Compute a function
\circ Given an input x , what is $\mathrm{f}(\mathrm{x})$?

How does a TM work?

- At the beginning,
-A TM is in the start state (initial state)
oits tape head points at the first cell
\bigcirc The tape contains Δ, following by input string, and the rest of the tape contains Δ.

How does a TM work?

- For each move, a TM
- reads the symbol under its tape head
- According to the transition function on the symbol read from the tape and its current state, the TM:
* write a symbol on the tape
move its tape head to the left or right one cell or not
changes its state to the next state

When does a TM stop working?

- A TM stops working,
- when it gets into the special state called halt state. (halts)
"The output of the TM is on the tape.
- when the tape head is on the leftmost cell and is moved to the left. (hangs)
o when there is no next state. (hangs)

How to define deterministic TM (DTM)

- a quintuple ($Q, \Sigma, \Gamma, \delta, s$), where
- the set of states Q is finite, not containing halt state h,
- the input alphabet Σ is a finite set of symbols not including the blank symbol Δ,
- the tape alphabet Γ is a finite set of symbols containing Σ, but not including the blank symbol \triangle,
- the start state s is in Q, and
- the transition function δ is a partial function from $Q \times$ $(\Gamma \cup\{\Delta\}) \rightarrow Q \cup\{h\} \times(\Gamma \cup\{\Delta\}) \times\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}$.

Example of a DTM

$\mathrm{M}=$

(\{s,p1,p2,p3,p4,q1,q2\},
 $\{0,1\},\{0,1, @\}, \delta, \mathrm{s}\}$

How a DTM works

How a DTM works

Configuration

Definition

- Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a DTM.

A configuration of T is an element of

Yield the next configuration

Definition

- Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a DTM, and $\left(q_{1}, \alpha_{l} a_{\underline{l}} \beta_{l}\right)$ and $\left(q_{2}\right.$. $\left.\alpha_{2} \underline{a}_{2} \beta_{2}\right)$ be two configurations of T.
We say $\left(q_{l}, \alpha_{1} \underline{a}_{1} \beta_{l}\right)$ yields $\left(q_{2}, \alpha_{2} \underline{a}_{2} \beta_{2}\right)$ in one step, denoted by $\left(q_{1}, \alpha_{1} \underline{a}_{2} \beta_{I}\right)-{ }^{T}\left(q_{2}, \alpha_{2} \underline{a}_{2} \beta_{2}\right)$, if
- $\delta\left(q_{1}, a_{1}\right)=\left(q_{2}, a_{2}, s\right), \alpha_{1}=\alpha_{2}$ and $\beta_{l}=\beta_{2}$,
- $\delta\left(q_{1}, a_{1}\right)=\left(q_{2}, b, \mathrm{R}\right), \alpha_{2}=\alpha_{1} b$ and $\beta_{l}=a_{2} \beta_{2}$,
- $\delta\left(q_{l}, a_{1}\right)=\left(q_{2}, b, \mathrm{~L}\right), \alpha_{1}=\alpha_{2} a_{2}$ and $\beta_{2}=b \beta_{l}$.

Yield in zero step or more

Definition

- Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a DTM, and $\left(q_{l}, \alpha_{l} \underline{a}_{l} \beta_{l}\right)$ and $\left(q_{2}\right.$. $\alpha_{2} \underline{a}_{2} \beta_{2}$) be two configurations of T.

We say $\left(q_{1}, \alpha_{1} \underline{a}_{1} \beta_{l}\right)$ yields $\left(q_{2}, \alpha_{1} \underline{a}_{2} \beta_{2}\right)$ in zero step or more, denoted by $\left(q_{1}, \alpha_{1} \underline{a}_{1} \beta_{l}\right)-_{T}\left(q_{2}, \alpha_{1} \underline{a}_{2} \beta_{2}\right)$, if

- $q_{1}=q_{2}, \alpha_{1}=\alpha_{2}, a_{1}=a_{2}$, and $\beta_{l}=\beta_{2}$, or
$\left.\circ\left(q_{1}, \alpha_{1} \underline{a}_{1} \beta_{l}\right)\right|_{T}(q, \alpha \underline{\alpha} \beta)$ and $\left.(q, \alpha \underline{a} \beta)\right)_{T}^{*}\left(q_{2}, \alpha_{1} \underline{a}_{2} \beta_{2}\right)$ for some q in Q, α and β in Γ^{*}, and a in Γ.

Yield in zero step or more: Example

